Deep Brain Stimulation for Treatment-Resistant Psychiatric Illnesses: What Has Gone Wrong and What Should We Do Next?

To the Editor:

Invasive brain stimulation, particularly deep brain stimulation (DBS), has been heralded as a step forward for psychiatry. However, despite great promise, recent well-controlled studies for psychiatric illness have failed. We hypothesize that the root of these difficulties is our inability to carefully choose the patients to whom we offer DBS. Based on emerging results in neurobiology, we suggest a way forward through clinical studies that focus more closely on the underlying disturbances.

Roughly a decade ago, the literature blossomed with successes for DBS in refractory psychiatric illnesses. Open-label efficacy of DBS was shown at multiple anatomic targets in major depressive disorder (MDD) and obsessive-compulsive disorder (OCD) (1–3). Since then, despite careful design, two large randomized trials of DBS for MDD have failed (4). The lone survivor in the United States is DBS for treatment-refractory OCD. This indication is available under a humanitarian device exemption, which does not require controlled data because few patients with OCD qualify for implantation each year. Noninvasive neuromodulatory technologies have reached wider clinical use, but with ~50% response rates in treatment-resistant depression (5), there is a long way to go.

What went wrong? And how can we fix it? We cannot simply blame large placebo effects. Designing shams for neuromodulation is difficult, but recent trials have verified effective binding (4). We believe that the solution is simpler and well known to most investigators: Clinical rating scales and the checklist-based diagnostic approach do not measure what DBS actually does.

The MDD trial failures illustrate the above statement. None of the targets in those trials covers the full range of depression symptoms. The subcallosal cingulate gyrus CG25 target was selected for its role in negative mood (2). Effects of ventral capsule/ventral striatum (VC/VS) stimulation were first demonstrated for OCD, suggesting an effect on perseverative thinking (1). The medial forebrain bundle, the newest target with demonstrated for OCD, suggesting an effect on perseverative thinking (1). The International Society to Predict Optimized Treatment for Depression trial indicated that patients with MDD who show a specific cognitive impairment phenotype also have a different pattern of medication response (6).

Building on the above insights, we propose a new direction: DBS trials should select patients based on measurable transdiagnostic behaviors embedded within clinical diagnoses and should emphasize change in those behaviors as their primary outcomes. From a regulatory perspective, it will still be necessary to target DBS to disorders, not to the behaviors directly. In the United States, the Food and Drug Administration labels devices for diagnoses. We cannot readily test a DBS equivalent of the Unified Protocol in psychotherapy. However, we can select patients based on a biomarker within a disorder. This is the foundation of the “experimental medicine” approach of the National Institute of Mental Health clinical trials. It enables the construction of more reliable models of mental illness at multiple levels (6). It also comports with what we now know. At any target, DBS modulates the activity of a distinct circuit (although targets may access overlapping circuits). Each circuit can be mapped to a functional domain, whether a Research Domain Criteria construct or a broader notion such as obsessive thinking. That domain level is also what we can measure with psychophysical tasks. This implies that most of the human neuroscience literature tells us about domains and circuits, not disorders. We propose to adapt those neuroscience schemas to the realm of clinical trials, developing a more rational basis for DBS targeting. No one would be surprised if a trial of an antibiotic for “fever” failed; we would expect efficacy against a specific bacterium. The next generation of DBS trials should aim for similar precision.

The cross-diagnostic approach also offers a “silver lining” for recent failed trials. Investigators now have patient cohorts with functional implants and varying degrees of clinical response. Studying these cohorts through functional magnetic resonance imaging, electroencephalography, or magnetoencephalography could reveal biomarkers and circuit-specific phenomena, which could then refine patient selection or define a new trial target. For example, in our recent trial of VC/VS DBS for depression, improvement on the Montgomery-Åsberg Depression Rating Scale correlated with DBS-induced change in a psychophysical task. Reaction times in an affective interference task, which combines emotional distractors with Stroop-like cognitive interference, were reduced by DBS. That reduction correlated with the absolute decline in Montgomery-Åsberg Depression Rating Scale ($r = .56, p < .03$) (10). This matches a similar finding reported by the International Study to Predict Optimized Treatment for Depression investigators (9). To exploit this finding in a clinical trial, we could screen patients with treatment-resistant depression using the same task. Entry to the trial would depend on impaired performance or abnormal patterns of brain activation (e.g., recruitment of additional brain areas to compensate for a deficit). This approach would identify a cohort of patients with specific...
Impairments in a circuit linked to the VC/VS, who might be more likely to benefit from VC/VS DBS. The same approach could apply across disorders/targets, such as an emotion-regulation task to screen for patients with CG25-relevant impairment or a reward valuation task to screen for anhedonic medial forebrain bundle DBS candidates.

The inventor R. Buckminster Fuller reportedly said, “There is no such thing as a failed experiment, only experiments with unexpected outcomes.” The recent tribulations of DBS were unexpected, but in retrospect not surprising. From those apparent failures, we now have an opportunity to enhance the basic science and the clinical toolkit of psychiatry.

Alik S. Widge
Thilo Deckersbach
Emad N. Eskandar
Darin D. Dougherty

Acknowledgments and Disclosures
This work was supported by the Defense Advanced Research Projects Agency Systems-Based Neurotechnology for Emerging Therapies program, cooperative agreement W911NF-14-2-0045.

DDD and ENE have received research support from and served on advisory panels for Medtronic and Cyberonics. All authors are named inventors on a patent application related to transdiagnostic targeting of brain stimulation interventions.

Article Information
From the Departments of Psychiatry (ASW, TD, DDD), Massachusetts General Hospital and Harvard Medical School, Charlestown; Picower Institute for Learning and Memory (ASW), Massachusetts Institute of Technology, Cambridge; and Department of Neurological Surgery (ENE), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.

Address correspondence to Alik S. Widge, M.D., Ph.D., 149 13th Street, Room 2625, Charlestown, MA 02129; E-mail: awidge@partners.org.

References